

IN THE ARAB COUNTRIES

UNDER THE THEME "MANAGING MAINTENANCE WITHIN INDUSTRY 4.0" CONICIDE WITH THE 16TH ARAB MAINTENANCE EXHIBITION

Preventive Maintenance Optimisation

Tom Svantesson

Maintenance strategies are suggested and decided by:...

- The manufacturers recommendations
- The "Case of one!" one failure
- The experience from the maintenance technicians
- A structured analysis process RCM, FMECA, RBI
- - Or the Preventive Maintenance Optimization process

Asset Criticality Sorting

Maintenance types – EN 13306:2017

Failure pattern

Ex.: Light bulb, Capacitators, Tube walls, Pneumatical cylinders

Failure pattern

Ex.: Rotating equipment, control systems

Criticality matrix – Probability MTBF x consequence

High Criticality

Consecuence Level	Production Availability	Production Reliability	Safety	Quality Regulatory - Environmental - requirements	Quality GxP requirements	Quality Internal requirement, SOP	Cost £ (If not maintained)	ATBF Build Ars - 10 yrs 3 yrs - 10 yrs	MTBF MTBF More Class	1 MTBF 538 Under 1 year	/
3	Large reduction in output – more than 25%	Loss of more than one batch or equivalent	Fatality, disabled or LTA	Deviation not accepable			5.000 and above	н	н	н	
2	Middle reduction in output – 5 - 25%	Loss of more than 50% of a batch or equivalent	None or Iow LTA	Deviation acceptable with documented deviation report			2.000 - 5.000	L	н	н	
1	No/Low reduction in output – 0 - 5%	Loss of 10% - 50% of a batch or equivalent	No injuries	No violation of requirements			0 - 2.000	L ♠	L	н	
					OW						

Criticality

Decision tree –

To decide the maintenance strategy for a failure

The process for

Preventive Maintenance Optimisation

www.tsmc.dk

Case studies:...

Pharmaceutical site – Research and development, production and admin facilities:

Review of the programme for HVACs.

The starting point was a filter replacement every 6 month for all the 400 assets regardless of the assets` criticality.

The PMO project replaced the existing preventive maintenance (PM) strategy to Condition Based Maintenance by measuring the filter degradation

Pay-back time for the project was 3 months, an increased service and compliance level for the production and much easier planning process for the maintenance activities.

Case studies:...

Oil and Gas – Upstream facility

The existing PM programme was reviewed by the PMO process. The cost for PM activities was reduced while maintaining - and for some units even - reducing the cost for corrective maintenance. The result was an annual saving on 600.000 US\$.

Fossil fired power plant.

The PMO process was used on a critical ID fan which went through an overhaul every 3 years. After reviewing the data and the components condition, the decision was to extend the overhaul to every 5 years leading to a saving on 150,000 EUR plus the value of production.

